Logic/Binary.bruijn
# MIT License, Copyright (c) 2022 Marvin Borner
:import std/Combinator .
# true
true k ⧗ Boolean
# false
false ki ⧗ Boolean
# inverts boolean value
# equivalent of [0 ⇒ false]
not! c ⧗ Boolean → Boolean
¬‣ not!
:test (¬true) (false)
:test (¬false) (true)
# true if both args are true
and? [[0 1 0]] ⧗ Boolean → Boolean → Boolean
…⋀?… and?
:test (true ⋀? true) (true)
:test (true ⋀? false) (false)
:test (false ⋀? true) (false)
:test (false ⋀? false) (false)
# true if not both args are true
nand? [[1 0 1 false true]] ⧗ Boolean → Boolean → Boolean
:test (nand? true true) (false)
:test (nand? true false) (true)
:test (nand? false true) (true)
:test (nand? false false) (true)
# true if one of the args is true
or? m ⧗ Boolean → Boolean → Boolean
…⋁?… or?
:test (true ⋁? true) (true)
:test (true ⋁? false) (true)
:test (false ⋁? true) (true)
:test (false ⋁? false) (false)
# true if both args are false
nor? [[1 1 0 false true]] ⧗ Boolean → Boolean → Boolean
:test (nor? true true) (false)
:test (nor? true false) (false)
:test (nor? false true) (false)
:test (nor? false false) (true)
# true if args are not same bools
xor? [[0 (1 false 0) 1]] ⧗ Boolean → Boolean → Boolean
…^?… xor?
:test (xor? true true) (false)
:test (xor? true false) (true)
:test (xor? false true) (true)
:test (xor? false false) (false)
# true if both args are same bools
xnor? [[0 1 (1 0 true)]] ⧗ Boolean → Boolean → Boolean
:test (xnor? true true) (true)
:test (xnor? true false) (false)
:test (xnor? false true) (false)
:test (xnor? false false) (true)
# if first arg is true, exec first exp; else second exp
# this function is generally redundant
# I personally just write (exp? case-T case-F) directly
if [[[2 1 0]]] ⧗ Boolean → a → b → c
…?…:… if
:test (if true true false) (true)
:test (true ? true : false) (true)
:test (if false true false) (false)
:test (false ? true : false) (false)
# mathematical implies definition
implies [[1 0 true]] ⧗ Boolean → Boolean → Boolean
…⇒?… implies
:test (true ⇒? true) (true)
:test (true ⇒? false) (false)
:test (false ⇒? true) (true)
:test (false ⇒? false) (true)
# mathematical iff (if and only if) definition
iff xnor? ⧗ Boolean → Boolean → Boolean
…⇔?… iff
:test (true ⇔? true) (true)
:test (true ⇔? false) (false)
:test (false ⇔? true) (false)
:test (false ⇔? false) (true)